Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biomed Pharmacother ; 174: 116541, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565063

RESUMEN

BACKGROUND: Hypertension, a highly prevalent chronic disease, is known to inflict severe damage upon blood vessels. In our previous study, isoliensinine, a kind of bibenzyl isoquinoline alkaloid which isolated from a TCM named Lotus Plumule (Nelumbo nucifera Gaertn), exhibits antihypertensive and vascular smooth muscle proliferation-inhibiting effects, but its application is limited due to poor water solubility and low bioavailability. In this study, we proposed to prepare isoliensinine loaded by PEG-PLGA polymer nanoparticles to increase its efficacy METHOD: We synthesized and thoroughly characterized PEG-PLGA nanoparticles loaded with isoliensinine using a nanoprecipitation method, denoted as, PEG-PLGA@Isoliensinine. Additionally, we conducted comprehensive investigations into the stability of PEG-PLGA@Isoliensinine, in vitro drug release profiles, and in vivo pharmacokinetics. Furthermore, we assessed the antihypertensive efficacy of this nano-system through in vitro experiments on A7R5 cells and in vivo studies using AngII-induced mice. RESULT: The findings reveal that PEG-PLGA@Isoliensinine significantly improves isoliensinine absorption by A7R5 cells and enhances targeted in vivo distribution. This translates to a more effective reduction of AngII-induced hypertension and vascular smooth muscle proliferation. CONCLUSION: In this study, we successfully prepared PEG-PLGA@Isoliensinine by nano-precipitation, and we confirmed that PEG-PLGA@Isoliensinine surpasses free isoliensinine in its effectiveness for the treatment of hypertension, as demonstrated through both in vivo and in vitro experiments. SIGNIFICANCE: This study lays the foundation for isoliensinine's clinical use in hypertension treatment and vascular lesion protection, offering new insights for enhancing the bioavailability of traditional Chinese medicine components. Importantly, no toxicity was observed, affirming the successful implementation of this innovative drug delivery system in vivo and offers a promising strategy for enhancing the effectiveness of Isoliensinine and propose an innovative avenue for developing novel formulations of traditional Chinese medicine monomers.


Asunto(s)
Antihipertensivos , Liberación de Fármacos , Hipertensión , Isoquinolinas , Polietilenglicoles , Animales , Hipertensión/tratamiento farmacológico , Polietilenglicoles/química , Antihipertensivos/administración & dosificación , Antihipertensivos/farmacología , Antihipertensivos/química , Antihipertensivos/farmacocinética , Masculino , Isoquinolinas/farmacología , Isoquinolinas/administración & dosificación , Isoquinolinas/química , Isoquinolinas/farmacocinética , Ratas , Ratones , Nanopartículas/química , Línea Celular , Sistema de Administración de Fármacos con Nanopartículas/química , Ratas Sprague-Dawley , Portadores de Fármacos/química , Presión Sanguínea/efectos de los fármacos , Poliésteres/química
2.
Phytother Res ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526171

RESUMEN

BACKGROUND AND AIM: Although the anti-cancer activity of isoalantolactone (IATL) has been extensively studied, the anti-melanoma effects of IATL are still unknown. Here, we have investigated the anti-melanoma effects and mechanism of action of IATL. MTT and crystal violet staining assays were performed to detect the inhibitory effect of IATL on melanoma cell viability. Apoptosis and cell cycle arrest induced by IATL were examined using flow cytometry. The molecular mechanism of IATL was explored by Western blotting, confocal microscope analysis, molecular docking, and cellular thermal shift assay (CETSA). A B16F10 allograft mouse model was constructed to determine the anti-melanoma effects of IATL in vivo. The results showed that IATL exerted anti-melanoma effects in vitro and in vivo. IATL induced cytoprotective autophagy in melanoma cells by inhibiting the PI3K/AKT/mTOR signaling. Moreover, IATL inhibited STAT3 activation both in melanoma cells and allograft tumors not only by binding to the SH2 domain of STAT3 but also by suppressing the activity of its upstream kinase Src. These findings demonstrate that IATL exerts anti-melanoma effects via inhibiting the STAT3 and PI3K/AKT/mTOR signaling pathways, and provides a pharmacological basis for developing IATL as a novel phytotherapeutic agent for treating melanoma clinically.

3.
Medicine (Baltimore) ; 103(1): e36374, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181299

RESUMEN

BACKGROUND: Dry eye syndrome is an ocular surface disease with high incidence. Acupuncture combined with artificial tears is effective for treating dry eye syndrome. This study aimed to evaluate the evidence for the efficacy of acupuncture combined with artificial tears in dry eye syndrome by conducting a systematic review and meta-analysis. METHODS: A systematic online search was performed from the date of database establishment to July 1, 2023. The study groups that addressed acupuncture combined with artificial tears for patients with dry eye syndrome (DES) and the control groups that addressed artificial tears were analyzed. The main outcomes were tear breakup time (BUT) and Schirmer I test (SIT), assessed as previously described. RESULTS: Sixteen randomized or controlled trials met the selection criteria, and 1383 patients with DES were included in this study. The analysis results showed that BUT [Standard mean difference (SMD) = 1.25, 95% confidence interval (CI) (1.14, 1.37), P < .0001], SIT [SMD = 1.55, 95% CI (1.08, 2.02), P < .0001], and corneal fluorescein staining [SMD = -2.08, 95% CI (-2.96, -1.20), P < .00001] significantly improved in the trial groups compared with the control groups. The acupuncture treatment was more effective in reducing the levels of IL-6 (P < .0001) and TNF-α (P < .00001). The overall efficacy rate was better in the trial group than in the control group [odds ratio = 4.09, 95% CI (3.04, 5.51), P < .00001]. However, no significant difference was observed in the ocular surface disease index (P = .15) between the trial and control groups. CONCLUSION: The results of this study indicated that acupuncture combined with artificial tears could be considered safe, effective to patients with DES.


Asunto(s)
Terapia por Acupuntura , Síndromes de Ojo Seco , Humanos , Gotas Lubricantes para Ojos/uso terapéutico , Grupos Control , Bases de Datos Factuales , Síndromes de Ojo Seco/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Chin J Integr Med ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38216838

RESUMEN

OBJECTIVE: To explore the regulatory effect of Pien Tze Huang (PZH) on targeting partner of NOB1 (PNO1) and it's down-stream mediators in colorectal cancer (CRC) cells. METHODS: Quantitative polymerase chain reaction was performed to determine mRNA levels of PNO1, TP53, and CDKN1A. Western blotting was performed to determine protein levels of PNO1, p53, and p21. HCT-8 cells were transduced with a lentivirus over-expressing PNO1. Colony formation assay was used to detect cell survival in PNO1 overexpression of HCT-8 cells after PZH treatment. Cell-cycle distribution, cell viability and cell apoptosis were performed to identify the effect of PNO1 overexpression on cell proliferation and apoptosis of HCT-8 cells after PZH treatment. Xenograft BALB/c nude mice bearing HCT116 cells transduced with sh-PNO1 or sh-Ctrl lentivirus were evaluated. Western blot assay was performed to detect PNO1, p53, p21 and PCNA expression in tumor sections. Terminal deoxynucleotidyl transferase dUTP nick end labling (TUNEL) assay was used to determine the apoptotic cells in tissues. RESULTS: PZH treatment decreased cell viability, down-regulated PNO1 expression, and up-regulated p53 and p21 expressions in HCT-8 cells (P<0.05). PNO1 overexpression attenuated the effects of PZH treatment, including the expression of p53 and p21, cell growth, cell viability, cell cycle arrest and cell apoptosis in vitro (P<0.05). PNO1 knockdown eliminated the effects of PZH treatment on tumor growth, inhibiting cell proliferation inhibition and apoptosis induction in vivo (P<0.05). Similarly, PNO1 knockdown attenuated the effects of PZH treatment on the down-regulation of PNO1 and up-regulation of p53 and p21 in vivo (P<0.05). CONCLUSION: The mechanism by which PZH induces its CRC anti-proliferative effect is at least in part by regulating the expression of PNO1 and its downstream targets p53 and p21.

5.
Pharmacol Res ; 200: 107052, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181857

RESUMEN

BACKGROUND: The efficacy and safety of Qingda granule (QDG) in managing blood pressure (BP) among grade 1 hypertensive patients with low-moderate risk remain uncertain. METHODS: In the randomized, double-blind, double dummy, non-inferiority and multicenter trial, 552 patients with grade 1 hypertension at low-moderate risk were assigned at a ratio of 1:1 to receive either QDG or valsartan for 4 weeks, followed up by a subsequent 4 weeks. RESULTS: Post-treatment, clinic systolic/diastolic BPs (SBP/DBP) were reduced by a mean change of 9.18/4.04 mm Hg in the QDG group and 9.85/5.05 mm Hg in the valsartan group (SBP P = 0.47, DBP P = 0.16). Similarly, 24-hour, daytime and nighttime BPs were proportional in both groups (P > 0.05) after 4 weeks treatment. After discontinuing medications for 4 weeks, the mean reduction of clinic SBP/DBP were 0.29/0.57 mm Hg in the QDG group compared to -1.59/-0.48 mm Hg in the valsartan group (SBP P = 0.04, DBP P = 0.04). Simultaneously, the 24-hour SBP/DBP were reduced by 0.9/0.31 mm Hg in the QDG group and -1.66/-1.08 mm Hg in the valsartan group (SBP P = 0.006, DBP P = 0.02). And similar results were observed regarding the outcomes of daytime and nighttime BPs. There was no difference in occurrence of adverse events between two groups (P > 0.05). CONCLUSION: QDG proves to be efficacious for grade 1 hypertension at a low-to-medium risk, even after discontinuation of the medication for 4 weeks. These findings provide a promising option for managing grade 1 hypertension and suggest the potential for maintaining stable BP through intermittent administration of QDG. TRIAL REGISTRATION: ChiCTR2000033890.


Asunto(s)
Antihipertensivos , Medicamentos Herbarios Chinos , Hipertensión , Humanos , Antihipertensivos/efectos adversos , Presión Sanguínea , China , Método Doble Ciego , Tetrazoles/efectos adversos , Valsartán/efectos adversos
6.
J Ethnopharmacol ; 324: 117712, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38184025

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qingda granule (QDG) is effective for treating hypertension and neuronal damage after cerebral ischemia/reperfusion. However, the anti-neuroinflammatory effect of QDG on injury due to cerebral ischemia/reperfusion is unclear. AIM OF THE STUDY: The objective was to evaluate the effectiveness and action of QDG in treating neuroinflammation resulting from cerebral ischemia/reperfusion-induced injury. MATERIALS AND METHODS: Network pharmacology was used to predict targets and pathways of QDG. An in vivo rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) as well as an in vitro model of LPS-stimulated BV-2 cells were established. Magnetic resonance imaging (MRI) was used to quantify the area of cerebral infarction, with morphological changes in the brain being assessed by histology. Immunohistochemistry (IHC) was used to assess levels of the microglial marker IBA-1 in brain tissue. Bioplex analysis was used to measure TNF-α, IL-1ß, IL-6, and MCP-1 in sera and in BV-2 cell culture supernatants. Simultaneously, mRNA levels of these factors were examined using RT-qPCR analysis. Proteins of the TLR4/NF-κB/NLRP3 axis were examined using IHC in vivo and Western blot in vitro, respectively. While NF-κB translocation was assessed using immunofluorescence. RESULTS: The core targets of QDG included TNF, NF-κB1, MAPK1, MAPK3, JUN, and TLR4. QDG suppressed inflammation via modulation of TLR4/NF-κB signaling. In addition, our in vivo experiments using MCAO/R rats demonstrated the therapeutic effect of QDG in reducing brain tissue infarction, improving neurological function, and ameliorating cerebral histopathological damage. Furthermore, QDG reduced the levels of TNF-α, IL-1ß, IL-6, and MCP-1 in both sera from MCAO/R rats and supernatants from LPS-induced BV-2 cells, along with a reduction in the expression of the microglia biomarker IBA-1, as well as that of TLR4, MyD88, p-IKK, p-IκBα, p-P65, and NLRP3 in MCAO/R rats. In LPS-treated BV-2 cells, QDG downregulated the expression of proinflammatory factors and TLR4/NF-κB/NLRP3 signaling-related proteins. Additionally, QDG reduced translocation of NF-κB to the nucleus in both brains of MCAO/R rats and LPS-induced BV-2 cells. Moreover, the combined treatment of the TLR4 inhibitor TAK242 and QDG significantly reduced the levels of p-P65, NLRP3, and IL-6. CONCLUSIONS: QDG significantly suppressed neuroinflammation by inhibiting the TLR4/NF-κB/NLRP3 axis in microglia. This suggests potential for QDG in treating ischemia stroke.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Daño por Reperfusión , Ratas , Animales , FN-kappa B/metabolismo , Microglía , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Enfermedades Neuroinflamatorias , Receptor Toll-Like 4/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/farmacología , Ratas Sprague-Dawley , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/patología , Daño por Reperfusión/metabolismo
7.
J Ethnopharmacol ; 321: 117544, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070838

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Modified Danzhi Xiaoyao Powder (MDXP) is a traditional Chinese medicine formula remedy for treating Dry Eye Disease (DED). It showed the function of dispersing stagnated liver Qi for relieving Qi stagnation and clearing heat, which can be effective in treating conditions such as Dry Eye Disease (DED) and irregular menstruation due to liver depression and fire transformation. AIM OF THE STUDY: This study investigated the mechanism of the effect of MDXP in mice with DED. MATERIALS AND METHODS: A DED model was induced in mice using chronic painful stimulation (tail clamping) in combination with Benzalkonium Chloride Solution drops administered in a dry box for 28 days. After modeling, the MDXP groups were given Chinese medicine with different dosages by gavage for 14 days. The following parameters were recorded in each group: body mass, anal temperature, tear secretion, tear film rupture time, and corneal fluorescein staining. Behavioral changes were evaluated by elevating cross-maze and open-field experiments. The levels of inflammatory factors serum tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), fcγR-mediated phagocytosis pathway cell division control protein 42 homolog (CDC42), actin-related protein 2/3 complex subunit 2 (ARPC2), and actin-related protein 3 (ACTR3) were measured by using Enzyme-linked immunoassay (ELISA), immunohistochemical staining, and real-time fluorescent qualitative polymerase chain reaction (RT-qPCR). RESULTS: MDXP increased body mass and lowered body temperature, prolonged tear film break-up time, promoted tear secretion, repaired corneal damage, decreased horizontal and vertical scores, elevated percentage of open arm times and boom opening time percentage, and reduced the expression levels of inflammatory factors of TNF-α, IL-1ß and pathway-related proteins CDC42, ARPC2, and ACTR3 in mice. MDXP also reduced the expression levels of inflammatory factors of TNF-α and IL-1ß in human corneal endothelial cells (HCECs), mouse mononuclear macrophage cells (RAW264.7), and human myeloid leukemia mononuclear cells (THP-1). CONCLUSIONS: MDXP can relieve tension and anxiety, inhibit apoptosis, reduce phagocytosis, reduce the expression of pro-inflammatory factors, repair corneal damage, and improve the symptoms in DED mice. The mechanism of action may be through the fcγR-mediated phagocytosis pathway.


Asunto(s)
Lesiones de la Cornea , Síndromes de Ojo Seco , Femenino , Humanos , Ratones , Animales , Polvos/uso terapéutico , Factor de Necrosis Tumoral alfa , Células Endoteliales/metabolismo , Receptores de IgG/uso terapéutico , Síndromes de Ojo Seco/tratamiento farmacológico , Fagocitosis
8.
Environ Sci Pollut Res Int ; 30(53): 113747-113757, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37851254

RESUMEN

Conversion of native forest to cash crops is the predominant form of land use change in the Jianghuai Hilly Region. However, how plantations with different cash crops affect the soil multi-functionality is not well documented. In this study, we collected three kinds of cash crops soils (vegetable, orchard, and tea) and forest soil, to systematically review the relationship between soil microbial communities and soil multi-functionality. Soil multi-functionality had decreased in vegetable and orchard as compared to native forest, whereas tea plantation had no significant effects on soil multi-functionality. The results also showed that cash crop plantations decreased soil multi-functionality by shifting keystone species' abundance, for forest, vegetable, and orchard, the keystone species that were classified as module hubs in the bacterial co-occurrence network significantly negatively contributed to soil multi-functionality, but the keystone species categorized as module hubs in fungal co-occurrence network positively affected soil multi-functionality. Multiple soil properties were the drivers of the soil microbial community; thus, indicating that the altered soil properties under cash crop plantations were vital in determining microbial composition and biological processes. These results identified that sustainable management strategy in cash crop plantation needed to be developed for improving soil multi-functionality.


Asunto(s)
Microbiota , Suelo , Microbiología del Suelo , Bosques , Productos Agrícolas , Verduras ,
9.
Huan Jing Ke Xue ; 44(10): 5769-5778, 2023 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-37827792

RESUMEN

This study aimed to elucidate the cadmium (Cd) concentration and transport characteristics of Pueraria thornsonii in farmland with different Cd pollution degrees, so as to provide a reference basis for phytoremediation of Cd-contaminated farmland. The multi-point experiments in farmland with different Cd pollution degrees[ω(Cd) 0.32-38.08 mg·kg-1] were conducted, and the biomass (dry weight), Cd content, accumulation, concentration, and transport of Cd in P. thornsonii tissues under the main growing period were assessed. According to the results, for P. thornsonii, the tuber dry weight ranged from 5.04 to 11.98 t·hm-2, biomass ranged from 13.21 to 29.07 t·hm-2, and Cd accumulation ranged from 15.74 to 106.03 g·hm-2in the study area. The pattern of Cd uptake by P. thornsonii showed that the main vine>leaf>lateral branches>basal part of sti>tuber. The Cd content in P. thornsonii tissues considerably increased with soil Cd content (P<0.05), whereas the biomass decreased significantly (P<0.05). The Cd concentration and transport factor of aboveground parts in P. thornsonii showed a trend of initially falling, then increasing and decreasing again, whereas the Cd enrichment and transport coefficient of tubers gradually decreased. Correlation analysis revealed that the amount of Cd in the soil was a major predictor of Cd accumulation in P. thornsonii. Under light to moderate Cd contamination, the commercial portion of P. thornsonii (arrowroot)[ω(Cd) 0.03-0.22 mg·kg-1] was less than the standard limit for medicinal plants (≤ 0.30 mg·kg-1). In P. thornsonii from moderately contaminated areas, the Cd concentration and transport factor of aboveground parts were 2.43-7.97 and 3.02-9.81, respectively. This indicates that P. thornsonii is a prospective plant ideal for remediating Cd-contaminated soil because of its high capacity to transfer and enrich Cd.


Asunto(s)
Pueraria , Contaminantes del Suelo , Cadmio/análisis , Granjas , Contaminantes del Suelo/análisis , Suelo , Biodegradación Ambiental
10.
Ultrason Sonochem ; 100: 106605, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742421

RESUMEN

This study presents a novel approach for converting cottonseed hulls (CSHs) into valuable proanthocyanidins (PAs) through deep eutectic solvent (DES)-based ultrasound-assisted extraction (UAE-DES). Response surface methodology (RSM) was applied to optimize and model this process, resulting in maximum yields of 78.58 mg/g. The ideal PA extraction conditions were determined to be a liquid-to-material ratio of 36.25 mL/g, a water content of 33.21%, and an extraction period of 7.4 min. Molecular dynamic simulations (MDS) were performed to study the interactions between the solvent and target chemicals. Increased van der Waals forces and stronger interactions between DES and the target chemical catechin (CA) compared to those observed with methanol or water were observed. Furthermore, the optimized extract exhibited a higher PA content than can be obtained with conventional extraction methods and demonstrated antioxidant activity in vitro. The cottonseed hulls residues (CSRs) remaining after the extraction process can be used to produce activated carbon (ACCSR), which has some capacity to adsorb methylene blue (MB) contaminants. This study offers a reference for the fruitful transformation of waste biomass into high-value products.


Asunto(s)
Proantocianidinas , Aceite de Semillas de Algodón , Disolventes Eutécticos Profundos , Solventes/química , Agua/química
11.
Pestic Biochem Physiol ; 195: 105557, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666618

RESUMEN

The diamondback moth (Plutella xylostella) is one of the most destructive lepidopteran pests of cruciferous vegetables. However, DBM has developed resistance to current chemical and biological insecticides used for its control, indicating the necessity for finding new insecticides against it. Bio-insecticides derived from plant extracts are eco-friendly alternatives to synthetic pesticides. The aims of this study were to evaluate the insecticidal activity of Consolida ajacis seed extracts against DBM, the underlying mechanism of the control effect of promising extracts, and the identification of the main insecticidal compounds of these extracts. The results showed that ethyl acetate extract of C. ajacis seed exhibited strong contact toxicity (LC50: 5.05 mg/mL), ingestion toxicity, antifeedant, and oviposition deterrent activities against DBM, among the extracts evaluated. At 72 h, glutathiase, acetylcholinesterase, carboxylesterase, peroxidase, and superoxide dismutase activities were inhibited, but catalase activity was activated. The main compound identified from the extract was ethyl linoleate, which had the most significant insecticidal activity on the diamondback moths. This study's findings provide a better understanding of the insecticidal activity of ethyl acetate extract obtained from C. ajacis and its main component (ethyl linoleate). This will help in the development of new insecticides to control DBM.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Ranunculaceae , Femenino , Animales , Insecticidas/farmacología , Acetilcolinesterasa
12.
Front Pharmacol ; 14: 1176579, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576825

RESUMEN

Background: Qing Hua Chang Yin (QHCY) is a famous formula of traditional Chinese medicine (TCM) and has been proven to have protective effect on ulcerative colitis. However, its protective effect and potential therapeutic mechanisms in chronic colitis remain unclear. The purpose of this study is to explore the effects and underlying mechanisms of QHCY on dextran sulfate sodium (DSS)-induced chronic colitis mice model. Methods: The chronic colitis model was established by administration of 2% DSS for three consecutive cycles of 7 days with two intervals of 14 days for recovery by drinking water. The experiment lasted 49 days. The DSS + QHCY group received QHCY administration by oral gavage at doses of 1.6 g/kg/d, DSS + Mesalazine group was administrated Mesalazine by oral gavage at doses of 0.2 g/kg/d. The control and DSS group were given equal volume of distilled water. The body weight, stool consistency and blood in stool were monitored every 2 days. The disease activity index (DAI) was calculated. The colon length was measured after the mice were sacrificed. The histomorphology of colonic tissues was checked by the HE and PAS staining. Immunohistochemistry was performed to detect the expressions of pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6), tight junction proteins (ZO-1, occludin) and Mucin2 (MUC2). 16S rRNA sequencing analysis was conducted to study the diversity and abundance of gut microbiota changes. Results: QHCY treatment not only significantly attenuated DSS-induced the weight loss, DAI score increase, colon shortening and histological damage in mice, but also decreased the expression of pro-inflammatory cytokines in colonic tissues and increased the expression of ZO-1, occludin, and MUC2. Furthermore, QHCY enhanced the diversity of gut microbes and regulated the structure and composition of intestinal microflora in mice with chronic colitis. Conclusion: QHCY has a therapeutic effect on a murine model of chronic colitis. It can effectively reduce the clinical and pathological manifestations of colitis and prevent alterations in the gut microbiota.

13.
Biomed Pharmacother ; 166: 115387, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37643486

RESUMEN

Adjuvant chemotherapy based on 5-fluorouracil (5-FU), such as FOLFOX, is suggested as a treatment for gastrointestinal cancer. Yet, intestinal damage continues to be a prevalent side effect for which there are no practical prevention measures. We investigated whether Babao Dan (BBD), a Traditional Chinese Medicine, protects against intestinal damage induced by 5-FU by controlling immune response and gut microbiota. 5-FU was injected intraperitoneally to establish the mice model, then 250 mg/kg BBD was gavaged for five days straight. 5-FU led to marked weight loss, diarrhea, fecal blood, and histopathologic intestinal damage. Administration of BBD reduced these symptoms, inhibited proinflammatory cytokine (IL-6, IL-1ß, IFN-γ, TNF-α) secretion, and upregulated the ratio of CD3(+) T cells and the CD4(+)/CD8(+) ratio. According to 16S rRNA sequencing, BBD dramatically repaired the disruption of the gut microbiota caused in a time-dependent way, and increased the Firmicutes/Bacteroidetes (F/B) ratio. Transcriptomic results showed that the mechanism is mainly concentrated on the NF-κB pathway, and we found that BBD reduced the concentration of LPS in the fecal suspension and serum, and inhibited TLR4/MyD88/NF-κB pathway activation. Furthermore, at the genus level on the fifth day, BBD upregulated the abundance of unidentified_Corynebacteriaceae, Aerococcus, Blautia, Jeotgalicoccus, Odoribacter, Roseburia, Rikenella, Intestinimonas, unidentified_Lachnospiraceae, Enterorhabdus, Ruminiclostridium, and downregulated the abundance of Bacteroides, Parabacteroides, Parasutterella, Erysipelatoclostridium, which were highly correlated with intestinal injury or the TLR4/MyD88/NF-κB pathway. In conclusion, we established a network involving 5-FU, BBD, the immune response, gut microbiota, and key pathways to explain the pharmacology of oral BBD in preventing 5-FU-induced intestinal injury.


Asunto(s)
Microbiota , FN-kappa B , Animales , Ratones , Factor 88 de Diferenciación Mieloide , Receptor Toll-Like 4 , ARN Ribosómico 16S , Proteínas Adaptadoras Transductoras de Señales
14.
Medicine (Baltimore) ; 102(28): e34202, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37443494

RESUMEN

BACKGROUND: Glaucoma is the leading cause of irreversible blindness worldwide. The aim of this study was to evaluate the efficacy and safety of Fufang Xueshuantong Capsules (FFXST) in combination with conventional drugs in the treatment of glaucoma using meta-analysis and trial sequential analysis (TSA). METHODS: Clinical trials of FFXST for glaucoma were identified in 8 databases until November 2022, and studies were included for meta-analysis and trial sequential analysis. RESULTS: In terms of efficacy endpoints, meta-analysis showed that the combination group of FFXST significantly improved clinical effective rate (RR 1.29, 95% CI 1.20-1.39, P < .00001), visual function (MD 0.04, 95% CI 0.04-0.05, P < .00001), light sensitivity (MD 6.07, 95% CI 4.63-7.51, P < .00001), end-systolic blood flow velocity (MD 2.68, 95% CI 2.19-3.16, P < .00001) and end-diastolic blood flow velocity (MD 2.07, 95% CI 1.86-2.28, P < .00001), and significantly reduced total gray-scale value (MD -64.38, 95% CI -69.08 to -59.68, P < .00001) and defect of visual field (MD -3.40, 95% CI -4.11 to -2.69, P < .00001) compared with the conventional regimen group, while the pulsatility index and resistance index were comparable. The TSA indicated that these benefits were conclusive. In terms of safety endpoints, meta-analysis demonstrated that total drug-related adverse events in the combination group of FFXST were comparable to those in the conventional regimen group, with TSA showing that more studies are needed to validate the current results. CONCLUSION: FFXST may be a safety and effective supplementary strategy for the treatment of glaucoma, which is worthy of further research.


Asunto(s)
Medicamentos Herbarios Chinos , Glaucoma , Humanos , Cápsulas , Medicamentos Herbarios Chinos/efectos adversos , Glaucoma/tratamiento farmacológico , Resultado del Tratamiento , Ensayos Clínicos como Asunto
15.
J Ethnopharmacol ; 317: 116768, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37308031

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Liensinine(Lien, C37H42N2O6) is an alkaloid compound from plumula nelumbinis that demonstrates an antihypertensive effect. The protective effects of Lien on target organs during hypertension are still unclear. AIM OF THE STUDY: This study aimed to understand the mechanism of Lien during the treatment of hypertension, with emphasis on vascular protection. MATERIALS AND METHODS: Lien was extracted and isolated from plumula nelumbinis for further study. In vivo model of Ang II-induced hypertension, non-invasive sphygmomanometer was used to detect the blood pressure in and out of the context of Lien intervention. Ultrasound was used to detect the abdominal aorta pulse wave and media thickness of hypertensive mice, and RNA sequencing was used to detect the differential genes and pathways of blood vessels. The intersection of Lien and MAPK protein molecules was detected by molecular interconnecting technique. The pathological conditions of abdominal aorta vessels of mice were observed by HE staining. The expression of PCNA, α-SMA, Collagen Type Ⅰ and Collagen Type Ⅲ proteins were detected by IHC. The collagen expression in the abdominal aorta was detected by Sirius red staining. The MAPK/TGF-ß1/Smad2/3 signaling and the protein expression of PCNA and α-SMA was detected by Western blot. In vitro, MAPK/TGF-ß1/Smad2/3 signaling and the protein expression of PCNA and α-SMA were detected by Western blot, and the expression of α-SMA was detected by immunofluorescence; ELISA was used to detect the effect of ERK/MAPK inhibitor PD98059 on Ang Ⅱ-induced TGF-ß1secrete; and the detection TGF-ß1and α-SMA protein expression by Western blot; Western blot was used to detect the effect of ERK/MAPK stimulant12-O-tetradecanoyl phorbol-13-acetate (TPA) on the protein expression of TGF-ß1 and α-SMA. RESULTS: Lien displayed an antihypertensive effect on Ang Ⅱ-induced hypertension, reducing the pulse wave conduction velocity of the abdominal aorta and the thickness of the abdominal aorta vessel wall, ultimately improving the pathological state of blood vessels. RNA sequencing further indicated that the differential pathways expressed in the abdominal aorta of hypertensive mice were enriched in proliferation-related markers compared with the Control group. The profile of differentially expressed pathways was ultimately reversed by Lien. Particularly, MAPK protein demonstrated good binding with the Lien molecule. In vivo, Lien inhibited Ang Ⅱ-induced abdominal aorta wall thickening, reduced collagen deposition in the ventral aortic vessel, and prevented the occurrence of vascular remodeling by inhibiting MAPK/TGF-ß1/Smad2/3 signaling activation. In addition, Lien inhibited the activation of Ang II-induced MAPK and TGF-ß1/Smad2/3 signaling, attenuating the expression of PCNA and inhibiting the reduction of α-SMA, collectively playing a role in the inhibition of Ang Ⅱ-induced hypertensive vascular remodeling. PD98059 alone could inhibit Ang Ⅱ-induced elevation of TGF-ß1 and the decrease of α-SMA expression. Further, PD98059 combined with Lien had no discrepancy with the inhibitors alone. Simultaneously TPA alone could significantly increase the expression of TGF-ß1 and decrease the expression of α-SMA. Further, Lien could inhibit the effect of TPA. CONCLUSION: This study helped clarify the protective mechanism of Lien during hypertension, elucidating its role as an inhibitor of vascular remodeling and providing an experimental basis for the research and development of novel antihypertensive therapies.


Asunto(s)
Hipertensión , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación Vascular , Antihipertensivos/farmacología , Antígeno Nuclear de Célula en Proliferación , Aorta Abdominal , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo
16.
J Sci Food Agric ; 103(13): 6463-6472, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37218075

RESUMEN

BACKGROUND: Waste cotton flowers, as a by-product of cotton cultivation, are enriched with bioactive substances that render them a promising natural source of health-promoting benefits. In this study, ultrasound-assisted extraction (UAE), subcritical water extraction (SWE), and conventional extraction (CE) approaches were applied to extract bioactive compounds from waste cotton flowers, and the metabolic profiles, bioactive components, antioxidants, and α-amylase inhibition of different extractions were systematically analyzed and compared. RESULTS: It was observed that UAE and CE extracts had similar metabolic profiles compared with SWE. The flavonoids and amino acids and derivatives were more prone to be extracted by UAE and CE, whereas phenolic acids tended to accumulate in SWE extract. The UAE extract had the highest amounts of total polyphenols (214.07 mg gallic acid equivalents per gram dry weight) and flavonoids (33.23 mg rutin equivalents per gram dry weight) as well as the strongest inhibition on oxidation (IC50 = 10.80 µg mL-1 ) and α-amylase activity (IC50 = 0.62 mg mL-1 ), indicating that chemical composition was closely related to biological activity. Additionally, microstructures and thermal behaviors of the extracts were investigated and highlighted the ability of UAE. CONCLUSION: Overall, it can be concluded that UAE is an efficient, green, and economical extraction method to produce bioactive compounds from cotton flowers, and the UAE extracts could be used in food and medicine industries because of their high antioxidant and α-amylase inhibitory activity. This study provides a scientific basis for the development and comprehensive utilization of cotton by-products. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Gossypium , alfa-Amilasas , Antioxidantes/química , Flavonoides/análisis , Flores/química , Metaboloma , Fenoles/química , Extractos Vegetales/química , Agua/análisis
17.
J Ethnopharmacol ; 313: 116535, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37100260

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qingda granule (QDG) exhibits significant therapeutic effects on high blood pressure, vascular dysfunction, and elevated proliferation of vascular smooth muscle cells by inhibiting multiple pathways. However, the effects and underlying mechanisms of QDG treatment on hypertensive vascular remodeling are unclear. AIM OF THE STUDY: The aim of this study was to determine the role of QDG treatment in hypertensive vascular remodeling in vivo and in vitro. MATERIALS AND METHODS: An ACQUITY UPLC I-Class system coupled with a Xevo XS quadrupole time of flight mass spectrometer was used to characterize the chemical components of QDG. Twenty-five spontaneously hypertensive rats (SHR) were randomly divided into five groups, including SHR (equal volume of double distilled water, ddH2O), SHR + QDG-L (0.45 g/kg/day), SHR + QDG-M (0.9 g/kg/day), SHR + QDG-H (1.8 g/kg/day), and SHR + Valsartan (7.2 mg/kg/day) groups. QDG, Valsartan, and ddH2O were administered intragastrically once a day for 10 weeks. For the control group, ddH2O was intragastrically administered to five Wistar Kyoto rats (WKY group). Vascular function, pathological changes, and collagen deposition in the abdominal aorta were evaluated using animal ultrasound, hematoxylin and eosin and Masson staining, and immunohistochemistry. Isobaric tags for relative and absolute quantification (iTRAQ) was performed to identify differentially expressed proteins (DEPs) in the abdominal aorta, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Cell Counting Kit-8 assays, phalloidin staining, transwell assays, and western-blotting were performed to explore the underlying mechanisms in primary isolated adventitial fibroblasts (AFs) stimulated with transforming growth factor-ß 1 (TGF-ß1) with or without QDG treatment. RESULTS: Twelve compounds were identified from the total ion chromatogram fingerprint of QDG. In the SHR group, QDG treatment significantly attenuated the increased pulse wave velocity, aortic wall thickening, and abdominal aorta pathological changes and decreased Collagen I, Collagen III, and Fibronectin expression. The iTRAQ analysis identified 306 DEPs between SHR and WKY and 147 DEPs between QDG and SHR. GO and KEGG pathway analyses of the DEPs identified multiple pathways and functional processes involving vascular remodeling, including the TGF-ß receptor signaling pathway. QDG treatment significantly attenuated the increased cell migration, actin cytoskeleton remodeling, and Collagen I, Collagen III, and Fibronectin expression in AFs stimulated with TGF-ß1. QDG treatment significantly decreased TGF-ß1 protein expression in abdominal aortic tissues in the SHR group and p-Smad2 and p-Smad3 protein expression in TGF-ß1-stimulated AFs. CONCLUSIONS: QDG treatment attenuated hypertension-induced vascular remodeling of the abdominal aorta and phenotypic transformation of adventitial fibroblasts, at least partly by suppressing TGF-ß1/Smad2/3 signaling.


Asunto(s)
Hipertensión , Factor de Crecimiento Transformador beta1 , Ratas , Animales , Ratas Endogámicas WKY , Factor de Crecimiento Transformador beta1/metabolismo , Fibronectinas/metabolismo , Remodelación Vascular , Análisis de la Onda del Pulso , Ratas Endogámicas SHR , Colágeno Tipo I/metabolismo , Fibroblastos , Valsartán/metabolismo , Valsartán/farmacología , Valsartán/uso terapéutico
18.
Integr Cancer Ther ; 22: 15347354231168369, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077153

RESUMEN

BACKGROUND: Cancer cachexia is a common but severe condition that causes muscle wasting, body weight loss, and progressive functional impairment, affecting over 50% of cancer patients. Currently, there are no effective treatments that can alleviate cachexia, and hence the discovery of new therapeutics that can effectively prevent or even reverse cancer cachexia is crucial. Babao Dan (BBD) is a Traditional Chinese Medicine (TCM) formula that has been used clinically in combating various cancers, however, its therapeutic potential in alleviating cancer cachexia remains unexplored. Our current study aims to determine the anti-cachectic effects of BBD treatment in alleviating cancer cachexia, as well as determining the underlying mechanisms involved. METHODS: Mouse models of cancer cachexia were induced via implantation of CT26 colon adenocarcinoma cells, and the anti-cachectic effects and mechanisms of BBD were determined via examinations of body weight and muscle mass, as well as serum and muscle markers of cachexia and muscle atrophy. RESULTS: CT26 tumor implantation reduced in the rapid occurrence of cancer cachexia characterized by marked reductions in body weight and muscle mass, functional decrease in muscle function and accelerated deaths. BBD administration not only demonstrated robust anti-cachectic ability via preventing decreases in body weight, muscle mass, and muscle atrophy, but also markedly prolonged survival. The effects of BBD in alleviating cancer cachexia and its associated adverse effects were due to its ability in preventing the activation of IL-6/STAT3 signaling post-CT26 tumor implantation. CONCLUSION: Our findings demonstrated the robust ability of BBD in preventing cancer cachexia and alleviating the main cachexia-induced symptoms as well as prolonging survival via inhibiting activation of IL-6/STAT3 signaling pathway. Therefore, our study demonstrating the strong anti-cachectic effects of BBD in mice may provide a theoretical basis for the use of BBD as a safe and effective drug in the treatment of cancer cachexia.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Ratones , Animales , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/metabolismo , Interleucina-6 , Adenocarcinoma/tratamiento farmacológico , Neoplasias del Colon/complicaciones , Neoplasias del Colon/tratamiento farmacológico , Atrofia Muscular , Transducción de Señal , Peso Corporal
19.
J Pharm Biomed Anal ; 228: 115320, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36871364

RESUMEN

A new approach is developed for the reliable classification of Calculus bovis along with the identification of willfully contaminated C. bovis species and the quantification of unclaimed adulterants. Guided by a principal component analysis, NMR data mining achieved a near-holistic chemical characterization of three types of authenticated C. bovis, including natural C. bovis (NCB), in vitro cultured C. bovis (Ivt-CCB), and artificial C. bovis (ACB). In addition, species-specific markers used for quality evaluation and species classification were confirmed. That is, the content of taurine in NCB is near negligible, while choline and hyodeoxycholic acid are characteristic for identifying Ivt-CCB and ACB, respectively. Besides, the peak shapes and chemical shifts of H2-25 of glycocholic acid could assist in the recognition of the origins of C. bovis. Based on these discoveries, a set of commercial NCB samples, macroscopically identified as problematic species, was examined with deliberately added sugars and outliers discovered. Absolute quantification of the identified sugars was realized by qHNMR using a single, nonidentical internal calibrant (IC). This study represents the first systematic study of C. bovis metabolomics via an NMR-driven methodology, which advances the toolbox for quality control of TCM and provides a more definitive reference point for future chemical and biological studies of C. bovis as a valuable materia medica.


Asunto(s)
Medicamentos Herbarios Chinos , Materia Medica , Análisis de Componente Principal , Taurina , Medicamentos Herbarios Chinos/química , Ácido Glicocólico
20.
Artículo en Inglés | MEDLINE | ID: mdl-36777624

RESUMEN

Objective: This study is designed to find out the molecular targets of effective Chinese medicine Ziyin Mingmu pills (ZMPs) in treating age-related macular degeneration (AMD) based on network pharmacology and experimental data. Methods: A comprehensive network pharmacology strategy that consists of three sequential modules (drug-disease target molecular docking, enrichment analysis, and external verification) was carried out to identify potential targets of ZMPs acting on AMD. Results: The active ingredients of ZMPs targeting 66 genes have effects on the process of AMD. GO and KEGG pathway enrichment analyses suggested that response to oxidative stress, regulation of angiogenesis, and lipid and atherosclerosis might serve as the most important signaling pathways in ZMPs for AMD treatment. Combined with the GSE29801 dataset for further analysis, two key genes, EGFR and VEGFA, were identified. Immune infiltration analysis showed that there was a strong association between EGFR and immune cell content. In addition, images were acquired following 24 h in the scratch experiment showed that ZMPs can reduce the percentage of wound healing distance. The Western blot assay found that ZMPs increased the expression of EGFR and decreased the expression of VEGFA. Conclusion: This study sheds light on some mechanisms of ZMP therapy for AMD, particularly the effect of ZMP on the oxidative stress in RPE and cell survival and angiogenesis in AMD. We propound ZMPs as a promising strategy to intervene in the process of AMD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA